282 research outputs found

    Typical and Atypical Development of Functional Human Brain Networks: Insights from Resting-State fMRI

    Get PDF
    Over the past several decades, structural MRI studies have provided remarkable insights into human brain development by revealing the trajectory of gray and white matter maturation from childhood to adolescence and adulthood. In parallel, functional MRI studies have demonstrated changes in brain activation patterns accompanying cognitive development. Despite these advances, studying the maturation of functional brain networks underlying brain development continues to present unique scientific and methodological challenges. Resting-state fMRI (rsfMRI) has emerged as a novel method for investigating the development of large-scale functional brain networks in infants and young children. We review existing rsfMRI developmental studies and discuss how this method has begun to make significant contributions to our understanding of maturing brain organization. In particular, rsfMRI has been used to complement studies in other modalities investigating the emergence of functional segregation and integration across short and long-range connections spanning the entire brain. We show that rsfMRI studies help to clarify and reveal important principles of functional brain development, including a shift from diffuse to focal activation patterns, and simultaneous pruning of local connectivity and strengthening of long-range connectivity with age. The insights gained from these studies also shed light on potentially disrupted functional networks underlying atypical cognitive development associated with neurodevelopmental disorders. We conclude by identifying critical gaps in the current literature, discussing methodological issues, and suggesting avenues for future research

    Neuroanatomical Correlates of Developmental Dyscalculia: Combined Evidence from Morphometry and Tractography

    Get PDF
    Poor mathematical abilities adversely affect academic and career opportunities. The neuroanatomical basis of developmental dyscalculia (DD), a specific learning deficit with prevalence rates exceeding 5%, is poorly understood. We used structural MRI and diffusion tensor imaging (DTI) to examine macro- and micro-structural impairments in 7- to 9-year-old children with DD, compared to a group of typically developing (TD) children matched on age, gender, intelligence, reading abilities and working memory capacity. Voxel-based morphometry (VBM) revealed reduced grey matter (GM) bilaterally in superior parietal lobule, intra-parietal sulcus, fusiform gyrus, parahippocampal gyrus and right anterior temporal cortex in children with DD. VBM analysis also showed reduced white matter (WM) volume in right temporal-parietal cortex. DTI revealed reduced fractional anisotropy (FA) in this WM region, pointing to significant right hemisphere micro-structural impairments. Furthermore, FA in this region was correlated with numerical operations but not verbal mathematical reasoning or word reading. Atlas-based tract mapping identified the inferior longitudinal fasciculus, inferior fronto-occipital fasciculus and caudal forceps major as key pathways impaired in DD. DTI tractography suggests that long-range WM projection fibers linking the right fusiform gyrus with temporal-parietal WM are a specific source of vulnerability in DD. Network and classification analysis suggest that DD in children may be characterized by multiple dysfunctional circuits arising from a core WM deficit. Our findings link GM and WM abnormalities in children with DD and they point to macro- and micro-structural abnormalities in right hemisphere temporal-parietal WM, and pathways associated with it, as key neuroanatomical correlates of DD

    An examination of who is eligible and who is receiving bariatric surgery in England : secondary analysis of the Health Survey for England dataset

    Get PDF
    Background: Over 2 million people in England were estimated to be eligible for bariatric surgery in 2006. In 2014, clinical guidelines were updated, widening potential eligibility, meanwhile, obesity prevalence rose. However, numbers receiving surgery decreased, and concerns exist of inequalities in access between population groups. This study is aimed at estimating the number of adults eligible for surgery in England and to compare demographics with those that receive surgery. Methods: BMI and comorbidity status were used to determine eligibility for bariatric surgery within participants of the 2014 Health Survey for England dataset (6938 adults), based on the National Institute of Health and Care Excellence guidelines. Results were scaled up using national population estimates. The demographics of eligible participants were compared against 2014/2015 hospital episode statistics for sex and age group using a chi-squared analysis. Results: Of the total population of England, 7.78% (95% CI 7.1–8.6%), or 3,623,505 people, could have been eligible for bariatric surgery in 2014; nearly a million more than if previous guidelines applied. Eligibility peaked at ages 45–54, with most in the 35–64 age group (58.9%). 58.4% of those eligible were women. Patients receiving surgery were far more likely to be female than male (76.1%) and the distribution skewed towards younger ages when compared with those eligible. Conclusion: Bariatric surgery may benefit many people in England; significant investment is required so that service provision is adequate for demand. Differences between demographics of those eligible and receiving surgery may be explainable; however, the potential health inequality should be investigated

    Molecular emission near metal interfaces: the polaritonic regime

    Full text link
    The strong coupling of a dense layer of molecular excitons with surface-plasmon modes in a metal gives rise to polaritons (hybrid light-matter states) called plexcitons. Surface plasmons cannot directly emit into (or be excited by) free-space photons due to the fact that energy and momentum conservation cannot be simultaneously satisfied in photoluminescence. Most plexcitons are also formally non-emissive, even though they can radiate via molecules upon localization due to disorder and decoherence. However, a fraction of them are bright even in the presence of such deleterious processes. In this letter, we theoretically discuss the superradiant emission properties of these bright plexcitons, which belong to the upper energy branch and reveal huge photoluminescence enhancements compared to bare excitons. Our study generalizes the well-known problem of molecular emission next to a metal interface to collective molecular states and provides new design principles for the control of photophysical properties of molecular aggregates using polaritonic strategies.Comment: Replaced previous version, noticing that van Hove anomalies are only observed in the direct and reflected contributions of photoluminescence, but they cancel out when added up in the total photoluminescence. The correct phenomenology is that enhancements of photoluminescence are still huge (not infinite) and are near (not exactly at) the critical poin

    Developmental Maturation of Dynamic Causal Control Signals in Higher-Order Cognition: A Neurocognitive Network Model

    Get PDF
    Cognitive skills undergo protracted developmental changes resulting in proficiencies that are a hallmark of human cognition. One skill that develops over time is the ability to problem solve, which in turn relies on cognitive control and attention abilities. Here we use a novel multimodal neurocognitive network-based approach combining task-related fMRI, resting-state fMRI and diffusion tensor imaging (DTI) to investigate the maturation of control processes underlying problem solving skills in 7–9 year-old children. Our analysis focused on two key neurocognitive networks implicated in a wide range of cognitive tasks including control: the insula-cingulate salience network, anchored in anterior insula (AI), ventrolateral prefrontal cortex and anterior cingulate cortex, and the fronto-parietal central executive network, anchored in dorsolateral prefrontal cortex and posterior parietal cortex (PPC). We found that, by age 9, the AI node of the salience network is a major causal hub initiating control signals during problem solving. Critically, despite stronger AI activation, the strength of causal regulatory influences from AI to the PPC node of the central executive network was significantly weaker and contributed to lower levels of behavioral performance in children compared to adults. These results were validated using two different analytic methods for estimating causal interactions in fMRI data. In parallel, DTI-based tractography revealed weaker AI-PPC structural connectivity in children. Our findings point to a crucial role of AI connectivity, and its causal cross-network influences, in the maturation of dynamic top-down control signals underlying cognitive development. Overall, our study demonstrates how a unified neurocognitive network model when combined with multimodal imaging enhances our ability to generalize beyond individual task-activated foci and provides a common framework for elucidating key features of brain and cognitive development. The quantitative approach developed is likely to be useful in investigating neurodevelopmental disorders, in which control processes are impaired, such as autism and ADHD
    corecore